Nuclear transit of the RNA-binding protein She2 is required for translational control of localized ASH1 mRNA.
نویسندگان
چکیده
Cytoplasmic localization and localized translation of messenger RNAs contribute to asymmetrical protein distribution. Recognition of localized mRNAs by RNA-binding proteins can occur in the cytoplasm or, alternatively, co- or post-transcriptionally in the nucleus. In budding yeast, mRNAs destined for localization are bound by the She2 protein before their nuclear export. Here, we show that a specific transcript, known as ASH1 mRNA, and She2 localize specifically to the nucleolus when their nuclear export is blocked. Nucleolar She2 localization is enhanced in a She2 mutant that cannot bind to RNA. A fusion protein of the amino terminus of She3 and She2 (She3N-She2) fails to enter the nucleus, but does not impair ASH1 mRNA localization. Instead, these cells fail to distribute Ash1 protein asymmetrically, which is caused by a defective translational control of ASH1 mRNA. Our results indicate that the nucleolar transit of RNA-binding proteins such as She2 is necessary for the correct assembly of translationally silenced localizing messenger ribonucleoproteins.
منابع مشابه
Co-transcriptional recruitment of Puf6 by She2 couples translational repression to mRNA localization
Messenger RNA (mRNA) localization is coupled to the translational repression of transcripts during their transport. It is still unknown if this coupling depends on physical interactions between translational control and mRNA localization machineries, and how these interactions are established at the molecular level. In yeast, localization of transcripts like ASH1 to the bud depends on the RNA-b...
متن کاملMultiple Myo4 motors enhance ASH1 mRNA transport in Saccharomyces cerevisiae
In Saccharomyces cerevisiae, ASH1 mRNA is transported to the bud tip by the class V myosin Myo4. In vivo, Myo4 moves RNA in a rapid and continuous fashion, but in vitro Myo4 is a nonprocessive, monomeric motor that forms a complex with She3. To understand how nonprocessive motors generate continuous transport, we used a novel purification method to show that Myo4, She3, and the RNA-binding prot...
متن کاملA new yeast PUF family protein, Puf6p, represses ASH1 mRNA translation and is required for its localization.
In yeast Saccharomyces cerevisiae, Ash1p, a protein determinant for mating-type switching, is segregated within the daughter cell nucleus to establish asymmetry of HO expression. The accumulation of Ash1p results from ASH1 mRNA that is sorted as a ribonucleoprotein particle (mRNP or locasome) to the distal tip of the bud where translation occurs. To study the mechanism regulating ASH1 mRNA tran...
متن کاملPurification of Saccharomyces cerevisiae eIF4E/eIF4G/Pab1p Complex with Capped mRNA
Protein synthesis is one of the most complex cellular processes, involving numerous translation components that interact in multiple sequential steps. The most complex stage in protein synthesis is the initiation process. The basal set of factors required for translation initiation has been determined, and biochemical, genetic, and structural studies are now beginning to reveal details of their...
متن کاملAssociation of the class V myosin Myo4p with a localised messenger RNA in budding yeast depends on She proteins.
Asymmetric distribution of messenger RNAs is a widespread mechanism to localize synthesis of specific protein to distinct sites in the cell. Although not proven yet there is considerable evidence that mRNA localisation is an active process that depends on the activity of cytoskeletal motor proteins. To date, the only motor protein with a specific role in mRNA localisation is the budding yeast t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- EMBO reports
دوره 9 8 شماره
صفحات -
تاریخ انتشار 2008